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Two-dimensional simulations based on the isothermal lattice-Boltzmann method have
been undertaken on microchannels with a sudden expansion or contraction. The study
provides insight into the analysis of flows in complicated microdevices. The flow is
pressure driven, and computations are performed for several Knudsen numbers, and
area and pressure ratios, allowing the effects of compressibility and rarefaction to be
assessed. The pressure drop for both the converging and diverging channels shows
a discontinuity in slope at the junction, and is accompanied by a jump in velocity.
The pressure drop in each section can be predicted well by the theory for straight
channels. The mass flow ratio between converging and diverging channels is close to
unity, and the streamlines are attached in both cases. It is deduced that compressibility
and rarefaction have opposite effects on the flow. These results suggest that complex
channels of the type considered here can be understood in terms of their primary
units, and they experience only small secondary losses.

1. Introduction
Micro-electro-mechanical systems (MEMS) devices with a typical length scale

between 1 mm and 1 micron are smaller than objects commonly encountered, and
exhibit several non-intuitive physical phenomena. They have a large surface-to-area
ratio and therefore surface forces become important. The Knudsen number (Kn) is
in the range of 0.001 to 0.1, which corresponds to a regime whereby the no-slip
boundary condition is violated at solid interfaces. The slip at the wall has to be
correctly modelled before realistic theoretical and numerical results can be obtained.
Not surprisingly, very little is known about the physics of these microdevices and
data are scanty. Because MEMS has a potentially large number of engineering and
biological applications (Ho & Tai 1998; Beebe, Mensing & Walker 2002), the last
decade has seen a surge of research on these devices.

An understanding of fluid flow in microdevices is imperative before new and efficient
micropumps and microactuators can be fabricated. Fluid flow in these devices is often
through channels with changes in cross-sectional area, and/or channels with bends
and bifurcations. A systematic study of these different configurations will provide
valuable insight into the flow physics. The goal of the present study is to undertake
a numerical study of diverging and converging channels with a sudden change in
cross-sectional area in order to identify the factors affecting the flow, and to document
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the differences between macro and micro scales for these geometries. The originality
of this work is in the use of the lattice-Boltzmann method (LBM) which is perhaps
better suited to microflows than the conventional Navier–Stokes solvers.

Flow through a straight channel is the simplest configuration where theoretical
(Arkilic, Schmidt & Breuer 1997), experimental (Pong et al. 1994; Meinhart, Wereley &
Santiago 2000) and numerical (Beskok, Karniadakis & Trimmer 1996) results are
available. Arkilic et al. (1997) solved the Navier–Stokes equations using perturbation
methods and applied a slip boundary condition to obtain the variations in pressure,
and longitudinal and lateral velocities in the channel. The analytical solution was
verified against the experimental data of Pong et al. (1994) and Arkilic et al. (1997).
Meinhart et al. (2000) used micro-PIV to measure the velocity field in straight
channels. Beskok et al. (1996) performed numerical simulations to understand the
effects of compressibility and rarefaction, and investigated the appropriate boundary
conditions for the flow.

Flows through more complicated geometries have been studied experimentally by
Lee, Wong & Zohar (2002) and Li et al. (2000) using integrated pressure sensors. Lee
et al. (2002) performed measurements in two channels connected in series with the
connection between the channels having an included angle of 5◦, 15◦, 90◦ or 180◦.
They measured the pressure drop and mass flow rate in the channel for Kn= 0.06
corresponding to nitrogen at atmospheric conditions. They found a large pressure
drop at the intersection of the channels, and suggested replacing the junction with
another channel with an equivalent pressure drop for the purpose of analysis. Li et al.
(2000) compared flows through an orifice and a Venturi at small Reynolds number
(Re =0.05) and reported that flow separation can occur at the corners, with a vortex
of 10 microns in diameter. In this paper, we present results from LBM simulations
in two-dimensional microchannels of different widths connected in series with an
included angle of 180◦. Our computations are isothermal and therefore there is no
temperature variation. The isothermal assumption is justified with silicon (which
is commonly used for MEMS components) because it is a good heat conductor
(Karniadakis & Beskok 2002). The velocity and pressure variations and the resulting
flow field are computed. The results suggest that the flow in (such) complex channels
can be understood from a knowledge of the flow in a straight channel.

2. Numerical procedure
2.1. The lattice-Boltzmann method

LBM is based on the movement of a number of particles on a lattice (Frisch,
Hasslacher & Pomeau 1986). With sufficient symmetry of the lattice, the method
inherently solves the compressible Navier–Stokes equations with second-order
accuracy. Although a relatively new technique, LBM has been applied to diverse
flow situations. Here, each computational node comprises eight moving particles and
a rest particle (figure 1a). The particle density evolution equation is given by

fi(x + ei , t + 1) = fi(x, t) − fi(x, t) − f
eq
i (x, t)

τ
(2.1)

where fi is the instantaneous particle density at a link, ei are the direction vectors
(figure 1a), τ is the relaxation time, and f

eq
i is the corresponding equilibrium density

computed as f
eq
i = ρwi(1 + 3(ei · u) + 9

2
(ei · u)2 − 3

2
u2). Here, u is the instantaneous

velocity at the node, ρ is the fluid density, and wi are the corresponding weights
(wi =4/9 for particle 0, 1/9 for particles 1–4, and 1/36 for particles 5–8). The
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Figure 1. (a) Computational node. There are eight moving particles (denoted 1 to 8), and a
particle at rest (0). The direction of motion of a particle is indicated by the corresponding
arrow. (b) Computational domain. Ratio of inlet (Ai) to outlet areas (Ao) determines the area
ratio of the microchannel. The arrow indicates the flow direction (which is left to right for the
diverging channel and right to left for the converging channel).

relaxation time is related to the kinematic viscosity of the fluid via the relation
ν = (2τ − 1)/6. Equation (2.1) is solved through the two steps of propagation and
collision using a BGK collision operator (Chen & Doolen 1998). The density and
velocity of fluid at a node are calculated from the equations ρ =

∑
i fi, ρu =

∑
i fiei .

Given the nature of this method, the use of LBM to simulate flows at high Kn seems
a natural choice.

Nie, Doolen & Chen (2002) and Lim et al. (2002) have suggested modifications
to the scheme in order to simulate high-Kn flows (Kn > 0.001 corresponding to the
slip flow regime). The basic idea in both these approaches is to change the relaxation
time appropriately. Nie et al. (2002) made τ a function of the density such that the
dynamic viscosity remains constant, whereas Lim et al. (2002) made τ a function of
Kn. Either of these schemes is easy to implement in a standard LBM code. In the
former approach, Kn is not known a priori, but the method is applicable to a wider
range of Kn. On the other hand, Kn can be fixed before the start of the computations
in the latter approach, but the resolution depends on Kn and consequently a relatively
small range of Kn can be investigated. Here we have adopted the scheme suggested
by Nie et al. (2002) with τ ′ = 1

2
+ (1/ρ)(τ − 1

2
) where τ ′ is the modified relaxation

time. Note that this scheme is primarily valid for low Knudsen number which is the
subject of investigation here.

2.2. Computational details

The computational domain consists of a two-dimensional channel with different
widths (figure 1b). The narrower section is represented by 10 points, and the area
ratio determines the number of points for the wider section (the area ratio is 2 for
most of the computations reported here). The total number of points is 1000 in
the streamwise direction with 500 points representing each of the narrow and wide
sections. The length to width ratio is about 50 and 25 for the narrow and wide sections
respectively, implying that the assumption of long channels is applicable here. The
numerical resolution (of about 1000 × 20) appears to be sufficient for these compu-
tations. The extra computational points on the narrow section are prescribed as solid
nodes and do not affect the flow.
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Figure 2. (a) Pressure distribution in converging (solid lines) and diverging channels (dashed
lines) for different values of Kn. The arrow is the direction of increasing Kn. (b) Comparison
of pressure between simulations (line) and theory (dots) for the converging (top curve) and
diverging (bottom curve) channels. The Knudsen numbers at the outlet are 0.012 and 0.0074
for the converging and diverging channels, respectively.

The pressure at the inlet and outlet are prescribed by fixing their ratio and
specifying a density. A constant pressure is implemented in the scheme by adjusting
the particle density at the incoming link to the difference of the remaining links from
the prescribed value according to its weight wi . For example, at the inlet, the particle
density of links 1, 5 and 8 (figure 1a) is kept higher than the links 3, 6 and 7 in order to
induce a flow to the right (into the computational domain). A bounce-back boundary
condition is used at the walls. This condition allows slip at the wall for high values of
Kn (Nie et al. 2002). The flow starts from rest and is driven by the pressure gradient
across the channel. The value of Kn is obtained from the pressure distribution. The
Reynolds number Re (based on the width of the narrower section and velocity at the
centreline of the junction) and Knudsen number in the computation correspond to
the range typically observed in microchannels. The results have been computed after
a steady state is achieved such that the difference in mass flux across the channel is
less than 0.05%.

3. Results
3.1. Pressure distribution

The pressure distribution at the centreline for a given pressure ratio and different
values of Kn for both the converging and diverging channels is shown in figure 2a.
The pressure variation is nonlinear and shows a discontinuity in slope at the junction.
The nonlinear pressure distribution in straight channels is due to the effects of
compressibility and rarefaction (Beskok et al. 1996). The large pressure difference
in the channel results in an expansion of the gas, leading to an acceleration of the
flow. An accelerating flow however tends to reduce the pressure. These two opposing
effects result in a nonlinear pressure distribution. The discontinuity in slope for the
streamwise pressure is due to the effect of compressibility combined with the sudden
change in cross-sectional area. This implies that for the present flow the information
does not travel either upstream or downstream, which is at odds with macro flows
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where a perturbation is felt some distance away from it. The results for the different
values of Kn imply that the deviation from a linear behaviour reduces with an increase
in Kn. This agrees with Beskok et al.’s (1996) observation for straight channels that
compressibility and rarefaction have opposite effects, the former tending to increase
the nonlinearity and the latter to reduce it.

Writing the pressure distribution in a series of microchannels as a combination of
results from a single channel (Arkilic et al. 1998), we obtain

P

Pj

= −6Knj +

((
6Knj +

Pi

Pj

)2

−
((

Pi

Pj

)2

− 1 + 12Knj

(
Pi

Pj

− 1

))
x

Li

)1/2

, (3.1)
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(3.2)

where P is pressure, the subscripts i, o, and j stand for inlet, outlet and junction
respectively, and Li and Lo are the length of the channel before and after the junction
(Li = Lo in our simulations). Note that (3.1) and (3.2) respectively represent pressure
in the sections before and after the junction. These expressions are similar to those
of Lee et al. (2002) but without the additional pressure loss term. We compare
the pressure computed from these expressions to the simulation results. Figure 2(b)
reveals an almost perfect agreement between the theoretical and simulated pressure
distribution. Lee et al. (2002) measured a pressure drop across the junction, and
attributed it to a loss during transition. The simulation suggests that there is no
pressure loss at the junction; rather, the pressure drop is a natural consequence of
the change in pressure corresponding to the change in cross-sectional area. In other
words, fixing a probe slightly upstream and downstream of the junction will reveal a
large pressure difference; but because the pressure in each section can be predicted
well by theory, the pressure drop is entirely due to the change in cross-sectional area.

If the pressure ratio is held constant and the area ratio is varied (a maximum area
ratio of 6 was tried) for diverging channels, it was found that the pressure in the
narrow section of the channel of the smaller area ratio drops very rapidly. This is
expected because of a relatively small pressure drop with a large area ratio in the
wider section. The pressure remains nonlinear in both the narrow and wide channels
and preserves the typical distribution of figure 2.

3.2. Velocity distribution and flow pattern

The longitudinal velocity U in a straight channel increases with x (the streamwise
coordinate) because of the expansion of the gas. (Note that all the velocities in this
paper have been normalized by the speed of sound.) Further, U is non-zero at the
walls (because of a finite slip), and the slip velocity increases with x. However, the
velocity profile remains parabolic. On the other hand, the lateral velocity V is zero at
the centreline (by symmetry) and at the wall (impervious wall) and exhibits maxima
between these two locations (Arkilic et al. 1998; Lim et al. 2002). In other words, the
effect of the expansion of the gas results in a maximum lateral velocity between the
centreline and the walls, and there is a net movement of the gas towards the walls.
Our simulations reproduce these features for both the wide and narrow sections of
the channels away from the junction (figure 3). However, the flow profiles cannot be
expected to exhibit this steady behaviour close to the junction (figure 3).

Surprisingly, the streamwise variation of U shows a jump at the intersection of the
channels (figure 4). (There seems to be some jitter at the beginning and end of the
channel probably due to the pressure boundary condition. It can also be because of
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Figure 3. (a) Streamwise velocity profile at the centre of the wider section (dashed) and near
the junction (solid) for the diverging channel. The y-axis has been normalized by the width, w,
of the channel. (b) Lateral velocity profile for the corresponding locations (the lateral velocity
at the centre has been multiplied by 10 000).
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Figure 4. Streamwise velocity at the centre of (a) the converging, and (b) diverging channels
for different values of Kn. Note that some of the curves have been shifted upwards to facilitate
the comparison. The x-axis has been normalized by the length (L) of the channel.

entry and exit effects.) Figure 5 shows that there are sufficient points (more than 10)
to represent this sharp rise or fall, and suggests that the flow rapidly adjusts to the
change in cross-sectional area. The sudden change in velocity can be inferred from the
continuity equation ρUA= constant. Because the variation in density ρ is continuous,
the velocity has to adjust to the change in area A. The jump in velocity differs from
shocks in compressible macroflows because here the jump in velocity is not accom-
panied by a jump in pressure. A jump in velocity suggests that because of the rarefac-
tion effect there is little communication between the different parts of the flow. Figure 5
further indicates that the change in U is not symmetric with respect to the intersection
point; instead, the change occurs mostly in the wider section. The result is surprising
because there is no such jump in ‘normal’ channels. The difference appears to be
related to the compressibility effect which plays an important role in microchannels.
The jump in U reduces as Kn increases for both converging and diverging channels,
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Figure 5. Magnified view of the streamwise velocity profile near the intersection of the
channels (solid line: converging, dashed line: diverging channel).
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Figure 6. Slip velocity as a function of the streamwise coordinate (solid line: converging,
dashed line: diverging channel).

i.e. compressibility and rarefaction have opposite effects as noted previously. The slip
velocity Us increases with x for both converging and diverging channels (figure 6) in
a manner similar to figure 4. Because Us is computed by fitting a parabola to the
velocity profile which is not a good approximation near the intersection (figure 3a), Us

shows a slight negative value (which is probably spurious) near the intersection. An
important consequence of the slip is that for a given pressure ratio and area additional
mass flux can be sustained through the channel (Karniadakis & Beskok 2002).

Unlike normal channels, the flow in microchannels does not separate at the corners
for the diverging geometry (figure 7a), and there is no vena contracta for the
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Figure 7. Streamlines for (a) the diverging and (b) converging channels with superposed
contours of the streamwise velocity. The streamlines are reminiscent of potential flows.
(c) Vector field for a wider area-ratio diverging channel. The number of vectors has been
substantially reduced in order to avoid overcrowding the figure. The x- and y-axes are
normalized by the width (w) of the channel. A reference vector of 0.003 times the speed of
sound is also shown.

converging case (figure 7b). In other words, the streamlines are attached and the
secondary losses are negligible in microchannels under conditions typically observed.
Interestingly, these results apply even when the area ratio is increased substantially
(up to 6) (figure 7c). The absence of vortex formation at the corner is probably
because of slip which reduces the strength of vorticity generation at the wall. Lee
et al. (2002) and Li et al. (2000) had conjectured that there are secondary pressure
losses, based on experience with macroflows, to explain the large pressure drop in
their measurements. As seen above, not only is the measured pressure drop due solely
to the location of the measuring probes upstream and downstream of the junction,
but there is no (additional) secondary pressure loss.

3.3. Mass flow

The mass flow can be easily computed once the velocity and density distributions in
the channel are known. Almost the same amount of gas flows through the converging
and diverging channels for a given pressure ratio (table 1). By keeping all parameters
fixed, a slightly larger mass flux is obtained for a converging channel than a diverging
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Pi/Po Density Recon Rediv Mcon/Mdiv

1.5 0.1 0.849 0.897 1.00
0.03 0.0869 0.0889 1.02
0.01 0.0208 0.0203 1.04

2 0.1 1.41 1.49 1.00
0.03 0.147 0.146 1.02
0.01 0.0357 0.0334 1.07

3 0.1 2.12 2.22 1.00
0.03 0.224 0.216 1.04
0.01 0.0517 0.0499 1.12

Table 1. Ratio of mass flux for the diverging to converging channels (with area ratio =2)
for different densities (a larger density corresponds to a lower Kn). M is the mass flux, and
subscripts ‘div’ and ‘con’ refer to the diverging and converging channel, respectively.

channel which suggests that the flow is not entirely reversible. Compared with
macroflows, the energy loss is large for diverging channels because of the large
secondary pressure losses, and, for a given pressure ratio, a much smaller mass flow
can be sustained through a diverging channel compared to a converging channel. The
result is in general agreement with the mass flow measurements of Lee et al. (2002).
They also verified that the result holds for other included angles as well. Table 1
also tabulates the ratio at various values of particle density (or Kn) and pressure
ratio. Based on this information, we conclude that secondary losses are small in
microchannels and perhaps other microdevices as well.

4. Concluding remarks
A numerical study has been undertaken on microchannels with a sudden expansion

or contraction. These simulations are the first of their kind for complicated micro-
devices. Good agreement with the theory and experiments indicates that the
simulations are effective in computing the flow through microdevices, and can
therefore be undertaken for predicting the flow behaviour at a much lower cost
and effort than experiments.

The pressure drop for both the converging and diverging channels shows a disconti-
nuity in slope at the intersection of the channels. However, the pressure in each
segment can be predicted well by the theory for straight channels. A jump in
streamwise velocity accompanies the discontinuity in pressure drop, the strength
of the jump being reduced as Kn increases. The cause of these discontinuities is
attributed to compressibility effects. These are different from those in flows with
shocks, where there is a discontinuity in both pressure and velocity across the shock.
The results indicate that there is little transfer of information between different parts
of the flow brought about by the rarefaction of the gas medium.

The amount of mass flow is almost the same for converging and diverging channels.
The streamlines are attached even at the corners suggesting that they experience
small secondary losses. From the results, it is also deduced that compressibility
and rarefaction have opposite effects. Surprisingly, these results indicate that the
complex channels of the type considered in this paper can be understood simply
from a knowledge of results for their primary units, i.e. straight channels. This opens
the possibility of understanding complex microchannels in terms of their primary
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units, which if conclusively shown will constitute a significant advancement in our
understanding of a network of microchannels.

The continuing support of Australian Research Council (ARC) is gratefully
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